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Abstract.

A new model is presented for multisite statistical downscaling of temperature and precipitation using convolutional condi-

tional neural processes (convCNPs). ConvCNPs are a recently developed class of models that allow deep learning techniques

to be applied to off-the-grid spatio-temporal data. This model has a substantial advantage over existing downscaling methods

in that the trained model can be used to generate multisite predictions at an arbitrary set of locations, regardless of the avail-5

ability of training data. The convCNP model is shown to outperform an ensemble of existing downscaling techniques over

Europe for both temperature and precipitation taken from the VALUE intercomparison project. The model also outperforms

an approach that uses Gaussian processes to interpolate single-site downscaling models at unseen locations. Importantly, sub-

stantial improvement is seen in the representation of extreme precipitation events. These results indicate that the convCNP is a

robust downscaling model suitable for generating localised projections for use in climate impact studies, and motivates further10

research into applications of deep learning techniques in statistical downscaling.

1 Introduction

Statistical downscaling methods are vital tools in translating global and regional climate model output to actionable guid-

ance for climate impact studies. General circulation models (GCMs) and regional climate models (RCMs) are used to provide

projections of future climate scenarios, however coarse resolution and systematic biases result in unrealistic behaviour, partic-15

ularly for extreme events (Allen et al., 2016; Maraun et al., 2017). In recognition of these limitations, downscaling is routinely

performed to correct raw GCM and RCM outputs. This is achieved either by dynamical downscaling, running a nested high-

resolution simulation, or statistical methods. Comparisons of statistical and dynamical downscaling suggest that neither group

of methods is clearly superior (Ayar et al., 2016; Casanueva et al., 2016), however in practice computationally cheaper statisti-

cal methods are widely used.20

Major classes of statistical downscaling methods are model output statistics (MOS) and perfect prognosis (PP; Maraun et

al., 2010). MOS methods explicitly adjust the simulated distribution of a given variable to the observed distribution, using

variations of quantile mapping (Teutschbein and Seibert, 2012; Piani et al., 2010; Cannon et al., 2020). Though these methods

are widely applied in impact studies, they struggle to downscale extreme values and artificially alter trends (Maraun, 2013;
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Maraun et al., 2017). In contrast, in PP downscaling, the aim is to learn a transfer function f such that25

ŷ = f(x,Z) (1)

Where ŷ is the downscaled prediction of a given climate variable whose true value is y at location x and Z is a set of pre-

dictors from the climate model (Maraun and Widmann, 2018). This is based on the assumption that while sub-grid-scale and

parameterised processes are poorly represented in GCMs, the large scale flow is generally better resolved.

Multiple different models have been trialled for parameterising f . Traditional statistical methods used for this purpose in-30

clude multiple linear regression (Gutiérrez et al., 2013; Hertig and Jacobeit, 2013), generalised linear models (San-Martín et al.,

2017) and analog techniques (Hatfield and Prueger, 2015; Ayar et al., 2016). More recently, there has been considerable interest

in applying advances in machine learning to this problem, including relevance vector machines (Ghosh and Mujumdar, 2008),

artificial neural networks (Sachindra et al., 2018), autoencoders (Vandal et al., 2019), recurrent neural networks (Bhardwaj

et al., 2018) and convolutional neural networks (Baño-Medina et al., 2020; Höhlein et al., 2020). There has been debate as to35

whether deep learning methods provide improvement over traditional statistical techniques such as multiple linear regression.

Vandal et al. (2019) found that machine learning approaches offered little improvement over traditional methods in downscal-

ing precipitation. In contrast Baño-Medina et al. (2020) compared downscaling performance of convolutional neural networks

(CNNs) and simple linear models, finding that CNNs improved predictions of precipitation, but did not result in improvements

for temperature.40

Limitations remain in these models. In many climate applications it is desirable to make projections that are both (i) con-

sistent over multiple locations and (ii) specific to an arbitrary locality. The problem of multi-site downscaling has been widely

studied, with two classes of approaches emerging. Traditional methods take analogues or principal components of the coarse-

resolution field as predictors. The spatial dependence is then explicitly modelled for a given set of sites, using observations at

those locations to train the model (Maraun and Widmann, 2018; Cannon, 2008; Bevacqua et al., 2017; Mehrotra and Sharma,45

2005). More recent work has sought to leverage avances in machine learning, for example CNNs, for feature extraction (Bhard-

waj et al., 2018; Baño-Medina et al., 2020; Höhlein et al., 2020). Each of these classes of methods has their drawbacks.

Traditional methods have limited feature selection, however are able to train directly on true observations. In contrast, deep

learning techniques such as CNNs allow for sophisticated feature extraction, however are only able to be applied to gridded

datasets. Gridding of observations naturally introduces error, especially for areas with complex topography and highly stochas-50

tic variables such as precipitation (King et al., 2013). The second limitation common to existing downscaling models is that

predictions can only be made at sites for which training data are available. Creating a projection at an arbitrary location is

achieved either through interpolation of model predictions or taking the closest location.

In this study, we address these challenges by developing a new statistical model for downscaling temperature and precipita-

tion at an arbitrary set of sites. This is achieved using convolutional conditional neural processes, state of the art probabilistic55

machine learning methods combining ideas from Gaussian Processes (GPs) and deep neural networks. The model combines

the advantages of existing classes of multi-site approaches, with feature extraction using a convolutional neural network to-
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gether with training on off-the-grid data. In contrast to existing methods, the trained model can be used to make coherent local

projections at any site regardless of the availability of training observations.

The specific aims of this study are as follows:60

1. Develop a new statistical model for downscaling GCM output capable of training on off-grid data, making predictions at

unseen locations and utilising sub-grid-scale topographic information to refine local predictions.

2. Compare the performance of the statistical model to existing strong baselines.

3. Compare the performance of the statistical model at unseen locations to existing interpolation methods.

4. Quantify the impact of including sub-grid-scale topography on model predictions.65

Section 2 outlines the development of the downscaling model, and presents the experimental setup used to address aims

2-4. Section 3 compares the performance of the statistical model to an ensemble of baselines. Sections 4 and 5 explore model

performance at unseen locations and the impact of including local topographic data. Finally, Section 6 presents a discussion of

these results and suggestions for further applications.

2 Datasets and methodology70

We first outline the development of the statistical downscaling model, followed by a description of three validation experiments.

2.1 The downscaling model

Our aim is to approximate the function f in equation 1 to predict the value of a downscaled climate variable y at locations x

given a set of coarse-scale predictors Z. In order to take the local topography into account, we assume that this function also

depends on the local topography at each target point, denoted e, i.e75

ŷ = f(x,Z,e)

We take a probabilistic approach to specifying f where we include a noise model, so that

p(y|x,Z,e) = p(y|θ(x,Z,e))

Deterministic predictions are made from this by using, for example, the predictive mean

ŷ =

!
yp(y|x,Z,e)dy80

In this model θ is parameterised as

θ(x,Z,e) = ψMLP [φc(h= CNN(Z),x),e]
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Figure 1. Schematic of the convCNP model for downscaling precipitation demonstrating the flow of data in predicting precipitation for a

given day at target locations x. Gridded coarse resolution data for each predictor is fed into the CNN, producing predictions of θ = (ρ,α,β)

at each grid point. These gridded predictions are then transformed to a prediction at the target location using an exponentiated-quadratic

kernel. Finally, these elevation agnostic predictions are fed into a multi-layer perceptron together with topographic data e to produce a final

prediction of the parameters.

Here θ is a vector of parameters of an distribution for the climate variable at prediction locations x. This is assumed to be Gaus-

sian for maximum temperature and a Gamma-Bernoulli mixture for precipitation. e is a vector of sub-grid-scale topographic

information at each of the prediction locations, ψMLP is a multi-layer perceptron, φc is a function parameterised as a neural85

network and CNN is a convolutional neural network. Each component of this is described below, with a schematic of the model

shown in Figure 1.
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1. Convolutional neural network In the first step, gridded reanalysis predictor data Z are fed into the model. These grids

are used as input to a convolutional neural network to extract relevant features. This is implemented as a 6-block Resnet

architecture (He et al., 2016) with depthwise separable convolutions (Chollet, 2017). The output from this step is a90

prediction of the relevant parameters for each variable at each grid point in the predictor set, i.e

hnm = CNN(Z)

Where hnm is the vector-valued output at latitude m∆x1 and longitude n∆x2 and m,n ∈ Z+ with ∆xi indicating the

grid spacing.

2. Translation to off-the-grid predictions These gridded predictions are translated to the off-the-grid target locations x95

using outputs from step 1 as weights for an exponentiated-quadratic (EQ) kernel φ, i.e

φc(h,x) =
"

m,n

hnmφ(x1 −m∆x1,x2 −n∆x2) =
"

m,n

hnme
− 1

2l21
(x1−m∆x1)

2− 1

2l22
(x2−n∆x2)

2

This outputs predictions of the relevant distributional parameters at each target location θ.

3. Inclusion of sub-grid scale topography

By design, the predictions from the previous step only model variation on the scale of the context grid spacing. This100

elevation agnostic output is post-processed using a multi-layer perceptron (MLP). This takes the parameter predictions

from the EQ kernel as input together with a vector of topographic data e at each target location.

θ(x,Z,e) = ψMLP (φc(h),e)

The vector e consists of three measurements at each target point:

(a) True elevation105

(b) Difference between the true and grid-scale elevation.

(c) Multi-scale topographic position index (mTPI), measuring the topographic prominence of the location, (i.e quanti-

fying whether the point is in a valley or on a ridge).

This MLP outputs the final prediction of the distributional parameters θ.

Figure 2 shows a concrete example of temperature and precipitation time-series produced using this model by sampling110

from the output distributions. Maximum temperature is shown for Helgoland, Germany, and precipitation for Madrid, Spain.

For both variables the model produces qualitatively realistic time-series.

This model is an example of a more general class of models known as convolutional conditional neural processes (ConvC-

NPs; Gordon et al., 2019). Formally, PP downscaling is an instance of a supervised learning problem to learn the function f

in equation 1. Approaches to learning such a function have traditionally been split into two categories: parametric approaches,115
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Figure 2. Examples of convCNP model predictions compared to observations for (top) maximum temperature in Helgoland, Germany and

(bottom) precipitation in Madrid, Spain.

where f is parameterised by a neural network which is optimised by gradient descent, and Bayesian methods specifying a dis-

tribution over f . Conditional neural processes (CNPs; Garnelo et al., 2018) combine the advantages of these approaches, using

neural networks to parameterise a stochastic process over the output variable, in this case either temperature or precipitation.

Various improvements to the original CNP model have been suggested, for example the inclusion of a global latent variable

(Garnelo et al., 2018) and attention to improve the flexibility of the model and prevent under-fitting (Kim et al., 2019). In the120

context of spatial data such as downscaling predictions, a desirable characteristic of predictions are that they are translation-

equivariant, that is the model makes identical predictions if data are spatially translated. The convCNP model (Gordon et al.,

2019) applied here builds this equivariance into the CNP model. Throughout this study, we refer to the model developed in this

section as ‘the convCNP model’.

2.1.1 Training125

The convCNP models are trained by minimising the average negative log-likelihood. For temperature, this is given by

NLLtemp =− 1

N

N"

i=1

log[N (yi|µi(xi,Z,ei),σi(xi,Z,ei))

where yi is the observed value, N (yi;µi,σi) denotes a Gaussian distribution over y with mean µi and variance σ2
i . These

parameters θ(xi,Z,ei) = {µi(xi,Z,ei),σ2
i (xi,Z,ei)} are generated by the model at each location xi and use topography ei. N
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is the total number of target locations. For precipitation, the negative log likelihood is given by130

NLLprecip =− 1

N

N"

i=1

[ri(ln(ρi(xi,Z,ei))+ ln(Γ(yi|αi(xi,Z,ei),βi(xi,Z,ei)))+ (1− ri)ln(1− ρi(xi,Z,ei))]

where ri is a Bernoulli random variable describing whether precipitation was observed at the ith target location, yi is the

observed precipitation, ρi parameterises the predicted Bernoulli distribution and Γ(yi;αi,βi) is a Gamma distribution with

shape parameter αi and scale parameter βi. Here θ(xi,Z,ei) = {ρi(xi,Z,ei),αi(xi,Z,ei),βi(xi,Z,ei)}.

Weights are optimised using Adam (Kingma and Ba, 2014), with the learning rate set to 5×10−4. Each model is trained for135

100 epochs on 456 batches of 16 days each, using early stopping with a patience of 10 epochs.

2.2 Experiments and datasets

Having addressed the first aim in developing the convCNP model, we next evaluate model performance via three experiments.

The first experiment compares the convCNP model to an ensemble of existing downscaling methods following a standardised

experimental protocol. In contrast to the convCNP model, these methods are unable to make predictions at locations where140

training data are not available. In the second experiment, we assess the performance of the convCNP model at these unseen

locations compared to a baseline constructed by interpolating single-site models. Finally, ablation experiments are performed

to quantify the impact of including sub-grid scale topographic information on performance.

2.2.1 Experiment 1 - baseline comparison

ConvCNP model performance is first compared to strong baseline methods taken from the VALUE experimental protocol.145

VALUE (Maraun et al., 2015) provides a standardised suite of experiments to evaluate new downscaling methods, together with

data benchmarking the performance of existing methods. In the VALUE 1a experiment, each downscaling method predicts the

maximum temperature and daily precipitation at 86 stations across Europe (Figure 2), given gridded data from the ERA-Interim

reanalysis (Dee et al., 2011). These stations are chosen as they offer continuous, high fidelity data over the training and held

out test periods and represent multiple different climate regimes (Gutiérrez et al., 2019). Data is taken from 1979-2008, with150

five-fold cross validation used over six-year intervals to produce a 30 year time-series.

The convCNPs are trained to predict maximum temperature and precipitation at these 86 VALUE stations given the ERA

Interim grids over Europe. Station data are taken from the European Climate Assessment Dataset (Klein Tank et al., 2002).

These grids are restricted to points between 35 and 72 degrees latitude and -15 to 40 degrees longitude. The VALUE experiment

protocol does not specify which predictors are used in the downscaling model (i.e which gridded variables are included in Z).155

Based on the predictors used by methods in the baseline ensemble, winds, humidity and temperature are included at multiple

levels together with time, latitude, longitude and invariant fields. Predictors are summarised in Table 1.

For the sub-grid scale information for input into the final MLP, the point measurement of three products is provided at

each station. True station elevation is taken from the Global Multi-resolution Terrain Elevation Dataset (USGS, 2010). This is
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Figure 3. Locations of ECA&D (left) and VALUE (right) stations, with altitude shaded.

provided to the model together with the difference between the ERA-Interim gridscale resolution elevation and true elevation.160

Finally, topographic prominence is quantified using the ALOS Global mTPI (Theobald et al., 2015).

Results of the convCNP model are compared to all available PP models in the VALUE ensemble, a total of 16 statistical

models for precipitation and 23 for maximum temperature. These models comprise a range of techniques including analogs,

multiple linear regression, generalised multiple linear regression and genetic programming. For a complete description of all

models included in the comparison, see Appendix A.165

2.2.2 Experiment 2 - performance at unseen locations

We next quantify model performance at unseen locations compared to an interpolation baseline. The convCNP models are

retrained using station data from the European Climate Assessment Dataset (ECA&D), comprising 3010 stations for precipita-

tion and 3047 stations for maximum temperature (Figure 2). The 86 VALUE stations are held out as the validation set, testing

the model performance at both unseen times and locations.170

As existing downscaling models are unable to handle unseen locations, it is necessary to construct a new baseline. A natural

baseline for this problem is to construct individual models for each station using the training set, use these to make predictions at

future times, and then interpolate to get predictions at the held out locations. For the single-station models, predictors are taken

from ERA-Interim data at the closest gridbox, similar to Gutiérrez et al. (2013). Multiple linear regression is used for maximum

temperature. For precipitation, occurrence is modelled using logistic regression, and accumulation using a generalised linear175
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Predictor Level Description

Surface

TMAX surface Maximum temperature

TMEAN surface Mean temperature

U10 surface Northward wind

V10 surface Eastward wind

Pr surface Accumulated precipitation

Upper level

Q 850hPa, 700hPa, 500hPa Specific humidity

TA 850hPa, 700hPa, 500hPa Temperature

UA 850hPa, 700hPa, 500hPa Northward wind

VA 850hPa, 700hPa, 500hPa Eastward wind

Invariant

ASO surface Angle of sub-gridscale orography

ANSO surface Anisotropy of sub-grid scale orography

FSO surface Standard deviation of filtered subgrid orography

SDO surface Standard deviation of orography

GSFC surface Geopotential

LAT surface Latitude

LON surface Longitude

Temporal

Time - Day of year, transformed as (cos(time), sin(time))

Table 1. Gridded predictors from ERA-Interim reanalysis included in Z.

model with gamma error distribution, similar to San-Martín et al. (2017). These methods are chosen as they are amongst the

best-performing methods of the VALUE ensemble for each variable (Gutiérrez et al., 2019).

Following techniques used to convert station observations to gridded datasets (Haylock et al., 2008), predictions at these

known stations in the future time period are made by first interpolating monthly means (totals) for temperature (precipitation)

using a thin-plate spline, then using a GP to interpolate the anomalies (fraction of the total value). All interpolation is three180

dimensional over longitude, latitude and elevation. Throughout the results section, this model is referred to as the GP-baseline.

2.2.3 Experiment 3 - topography ablation

Finally, the impact of topography on predictions is quantified. Experiment 2 is repeated three times with different combinations

of topographic data fed into the final MLP (step 3 in Figure 1): no topographic data, elevation and elevation difference only

and mTPI only.185
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Means

Metric Variables Description

mb Tmax, Precip mean bias

sp Tmax, Precip Spearman correlation between observed and predicted timeseries

MAE Tmax, Precip Mean absolute error

R01 Precip Relative wet day frequency (predicted precipitation days: observed pre-

cipitation days.

SDII Precip Mean wet day precipitation

Extremes

Metric Variables Description

98P Tmax, precip Bias in the 98th percentile.

R10 Precip Relative frequency of days with precipitation greater than 10mm

Table 2. Evaluation metrics.

2.3 Evaluation metrics

A selection of standard climate metrics are chosen to assess model performance over the evaluation period, quantifying the

representation of mean properties and extreme events (Table 2). Metrics are chosen based on those reported for the VALUE

baseline ensemble (Gutiérrez et al., 2019; Widmann et al., 2019; Maraun et al., 2019; Hertig et al., 2019).

Comparison to these metrics requires generating a timeseries of values from the distributions predicted by the convCNP190

model. For temperature, this is generated by taking the mean of the predicted distribution for mean metrics, and sampling is

used to complete the extreme metrics. For precipitation, a day is first classified as wet if ρ≥ 0.5 or dry if ρ< 0.5. For wet days,

accumulations are generated by taking the mean of the gamma distribution for mean metrics or sampling for extreme metrics.

3 Results: baseline comparison (experiment 1)

The convCNP model outperforms all VALUE baselines on median mean absolute error (MAE) and spearman correlation for195

both maximum temperature and precipitation. Comparisons of convCNP model performance at the 86 VALUE stations to each

model in the VALUE baseline ensemble are shown in Figure 4. The low MAE and high spearman correlation indicate that the

model performs well at capturing day-to-day variability.

For maximum temperature, the mean bias is larger than baseline models at many stations, with interquartile range -0.02C

to 0.08C. This is a direct consequence of training a global model as opposed to individual models to each station which200

will trivially correct the mean (Maraun and Widmann, 2018). Though larger than baseline models, this error is still small

for a majority of stations. Similarly for precipitation, though mean biases are larger than many of the VALUE models, the
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Figure 4. Comparison of the convCNP model to VALUE ensemble baselines for mean metrics, with the convCNP model shaded in blue.

Each box summarises performance for one model in the ensemble over the 86 training stations on the held out validation data.
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interquartile range is just -0.07mm to 0.12mm. For precipitation, the bias in convCNP relative wet day frequency (R01) and

mean wet day precipitation (SDII) are comparable to the best models in the VALUE ensemble (not shown).

When downscaling GCM output for impact studies, it is of particular importance to accurately reproduce extreme events205

(Katz and Brown, 1992). In line with previous work comparing the VALUE baselines (Hertig et al., 2019), an extreme event is

defined to be a value greater than the 98th percentile of observations. Comparisons of biases in the 98th percentile of maximum

temperature and precipitation are shown in Figure 5. The convCNP performs similarly to the best baselines, with a median bias

of -0.02C for temperature and -2.04mm for precipitation across the VALUE stations. R10 biases are comparable to baselines,

with a median bias of just -0.003mm.210

4 Results: performance at unseen locations (experiment 2)

The convCNP model outperforms the GP-baseline at unseen stations. Results for MAE, spearman correlation and mean bias

are shown in Figure 6. For maximum temperature, the convCNP model gives small improvements over the baseline model,

with spearman correlations of 0.99 (0.98) and MAE of 1.19C (1.35C) for the convCNP (GP baseline). Importantly, large

outliers (>10C) in the baseline MAE are not observed in the convCNP predictions. Figure 7 shows the spatial distribution of215

MAE for the convCNP and GP-baseline together with the difference in MAE between the two models. This demonstrates that

stations with high MAE in the convCNP model are primarily concentrated in the complex topography of the European Alps.

The GP-baseline model displays large MAE not only in the Alps, but also at other locations for example in Spain and France.

The convCNP improves predictions at 82 out of the 86 stations.

Repeating this analysis for precipitation, the convCNP model gives substantial improvement over the baseline for MAE220

and spearman correlation. Spearman correlations are 0.57 (0.20) and MAE 2.10mm (2.71mm) for convCNP (GP-baseline). In

contrast to maximum temperature, there is no clear link between topography and MAE, though again convCNP predictions

have large MAE for multiple stations located in the Alps. The convCNP model improves on baseline predictions at 80 out of

86 stations.

Comparisons between models for extreme metrics are shown in Figure 8. For maximum temperature, the convCNP has225

slightly lower absolute 98th percentile bias than the baseline. For precipitation, errors are substantially lower, with median

absolute 98th percentile bias of 4.90mm for convCNP compared to 22.92mm for the GP-baseline. The spatial distributions of

98th percentile bias for maximum temperature and precipitation predictions together with the difference in absolute bias are

shown in Figure 9. For maximum temperature, the convCNP does not improve on the baseline at all stations. The GP-baseline

exhibits uniformly positive biases, while the convCNP model has both positive and negative biases. Improvements are seen230

through central and eastern Europe, while the convCNP performs comparatively poorly in Southern Europe and the British

Isles. For precipitation, predictions have low biases across much of Europe for the convCNP, with the exception of in the

complex terrain of the Alps. GP-baseline biases are negative throughout the domain. For this case, convCNP predictions have

lower bias at 84 of the 86 validation stations.
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Figure 5. As for Figure 4, but for extreme metrics.
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Figure 6. Comparison of the convCNP model to the GP-baseline. Boxes summarise model performance over the 86 held out VALUE stations

for maximum temperature (top) and precipitation (bottom) for each of the mean metrics.

A limitation to the analysis of the standard climate metrics in Table 2 is that these only assess certain aspects of the predicted235

distribution. To assess the calibration of the models, we next examine the probability integral transform (PIT) values. The PIT

value for a given prediction is defined as the CDF of the distribution predicted by the convCNP model evaluated at the true

observed value. These values can be used to determine whether the model is calibrated by evaluating the PIT for every model

prediction at the true observation, and plotting their distribution. If the model is properly calibrated, it is both necessary and

sufficient for this distribution to be uniform (Gneiting et al., 2007). PIT distributions for maximum temperature and wet-day240

precipitation are shown in Figure 10. For temperature, the model is well calibrated overall, although the predicted distributions

are often too narrow, as demonstrated by the peaks around zero and one indicating that the observed value falls outside the

predicted normal distribution. Calibration of the precipitation model is poorer overall. The peak in PIT mass around zero

indicates that this model often over predicts rainfall accumulation. Performance varies between individual stations for both

temperature and precipitation, with examples of PIT distributions for both well- and poorly-calibrated stations shown in Figure245

10.
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Figure 7. Spatial distribution of mean absolute error for convCNP (right), GP baseline (centre) and convCNP - GP baseline (left). Maximum

temperature (precipitation) is shown on the top (bottom) row. All panels show results for each of the 86 held out VALUE stations.

5 Results: topography ablation (experiment 3)

Results of the topography ablation experiment are shown in Figure 11 (mean metrics) and Figure 12 (extreme metrics). These

figures compare the performance on each metric between the convCNP model with all topographic predictors, and convCNP

models trained with no topography, elevation and elevation difference only and mTPI only.250

For maximum temperature, inclusion of topographic information improves MAE, mean bias and spearman correlation.

Models including only mTPI or no topographic predictors have a number of stations with very large MAE, exceeding 10C

at several stations. Unsurprisingly, these stations are found to be located in areas of complex topography in the Alps (not

shown). Including elevation both decreases the median MAE and corrects errors at these outliers, with further improvement
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Figure 8. As for Figure 6, but for P98 and R10 biases.

observed with mTPI added. A similar pattern is seen for mean bias. More modest improvements are seen for precipitation,255

though inclusion of topographic data does result in slightly improved performance.

For maximum temperature, inclusion of topographic data results in reduced 98th percentile bias. This is primarily as a result

of including elevation and elevation difference data, with limited benefit derived from the inclusion of mTPI. In contrast, for

precipitation, models with topographic correction perform worse than the elevation agnostic model for both 98th percentile

and R10 biases. This reduced performance for precipitation may result from overfitting.260

6 Discussion and conclusion

This study demonstrated the successful application on convCNPs to statistical downscaling of temperature and precipitation.

The convCNP model performs well compared to strong baselines from the VALUE ensemble on both mean and extreme

metrics. For both variables the convCNP model outperforms an interpolation based baseline. Inclusion of sub-grid-scale topo-

graphic information is shown to improve model performance for mean and extreme metrics for maximum temperature, and265

mean metrics for precipitation.

The convCNP model has several advantages over existing methods beyond performance on these metrics. The most im-

portant of these is that the trained model can be used to predict values at any target point, regardless of whether this point

is included in the training set. In Sect. 2, we demonstrated that the convCNP model outperforms interpolation of single-site

downscaling models. This has application in developing local projections for climate impact studies. A second useful feature270

is that the convCNP takes raw grid data as input, without the need for feature engineering. This contrasts with many of the
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Figure 9. As for Figure 7, but for P98 biases. Here, the difference panels quantify the difference in absolute bias |P98convCNP |−
|P98GP−Baseline|. Negative (positive) values indicate that the convCNP (GP-Baseline) has better performance.

baseline methods, which rely on the identification of relevant circulation analogs. Although only temperature and precipitation

are considered in this study, the model is easily applied to any climate variable with available station observations, for example

windspeed.

It is instructive to consider these results more broadly in the context of the debate surrounding the application of deep275

learning models in downscaling. In this study we deploy deep learning approaches using domain-specific knowledge to shape

the architecture, and then deploy this inside simple statistical observation models. This approach is demonstrated to improve

on simple baselines on both mean and extreme metrics for maximum temperature and precipitation. This contrasts to previous

work suggesting that little benefit is derived from applying neural network models to downscaling maximum temperature

(Baño-Medina et al., 2020) and precipitation (Vandal et al., 2019), and motivates continued efforts to develop and benchmark280

such models for application in climate impact studies.
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Figure 10. KDEs showing probability integral transforms for model predictions compared to a uniform distribution to assess calibration for

temperature (top) and precipitation (bottom). For temperature PIT plots are shown for all values (left), a station where the model is well

calibrated (Braganca, Portugal; centre) and a station where the model is poorly calibrated (Gospic, Croatia; right). Similarly for precipitation,

PIT plots are shown for all values (left), a station where the model is well calibrated (Stornoway, UK; centre) and a station where the model

is poorly calibrated (Sondankyla, Finland; right).

Several areas remain for future work. Representation of certain metrics, notably precipitation extremes requires further

improvement, particularly in areas with complex topography. The topography ablation experiments demonstrate that the con-

vCNP P98 bias increases with the inclusion of topographic information. Dynamically, this is likely due to local flow effects

such as Föhn winds (Gaffin, 2007; Basist et al., 1994), which depend on the incident angle of the background flow. A possible285

explanation for this is that the MLP is insufficient to model these effects. Further experimentation with adding a second CNN

to capture the sub-grid-scale processes, and possibly conditioning predictions of this model on local flow is left as a topic for

future research.

Another avenue for improving model performance would be to change the distribution predicted by the convCNP. Model

calibration results presented in Section 4 indicate that the temperature downscaling model could be improved using a distri-290

bution with heavier tails. Precipitation model calibration requires improvement, with the model frequently under-predicting

wet day accumulations. A possible explanation for this is that the left hand tail of the gamma distribution decays rapidly. For
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Figure 11. Comparison of model performance in the topography ablation experiment. The complete model (All) is compared to models with

no topographic data (None), elevation and elevation difference only (Elevation) and mTPI only (mTPI). Boxes summarise model performance

over the 86 held out VALUE stations for maximum temperature (top) and precipitation (bottom) for each of the mean metrics.

cases where the mode of the predicted distribution is greater than zero, small observed accumulations are therefore heavily

penalised. Previous work has acknowledged that the Bernoulli-Gamma distribution used in this study is not realistic for all

sites (Vlček and Huth, 2009), and suggested that representation of precipitation extremes can be improved using a Bernoulli-295

Gamma-Gerneralised Pareto distribution (Ben Alaya et al., 2015; Volosciuk et al., 2017). Future work will explore improving

the calibration of the downscaling models using mixture distributions and normalising flows (Rezende and Mohamed, 2015) to

improve the calibration of the model. A further possibility for extending the convCNP model would be to explicitly incorporate

time by building recurrence into the model (Qin et al., 2019; Singh et al., 2019).

The final aspect to consider is extending these promising results downscaling reanalysis data to apply to future climate300

simulations from GCMs. An in depth analysis of the convCNP model performance on seasonal and annual metrics would

be beneficial in informing application to impact scenarios. A limitation in all PP downscaling techniques is that applying a

transfer function trained on reanalysis data to a GCM makes the assumption that the predictors included in the context set are

realistically simulated in the GCM (Maraun and Widmann, 2018). Future work will aim to address this issue through training a

convCNP model directly on RCM or GCM hindcasts available through projects such as EURO-CORDEX (Jacob et al., 2014).305
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Figure 12. As for Figure 11, but for extreme metrics.

Code availability. Model code is available at https://github.com/anna-184702/convCNPClimate (DOI:10.5281/zenodo.4554603).
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Appendix A: VALUE ensemble methods

Table 3 summarises the baseline methods in the VALUE ensemble. This information is adapted from (Gutiérrez et al., 2019).
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Model Variables Description

ANALOG Tmax, precip Standard analog, no seasonal component (Gutiérrez et al., 2013)

ANALOG-

ANOM

Tmax Analog with seasonal component (Ayar et al., 2016)

ANALOG-MP Tmax, precip Analog method with seasonal component (Raynaud et al., 2017)

ANALOG-SP Tmax, precip Analog method with seasonal component (Raynaud et al., 2017)

ESD-EOFSLP Tmax Multiple linear regression (Benestad et al., 2015)

ESD-SLP Tmax Multiple linear regression (Benestad et al., 2015)

ESD-T2 Tmax Multiple linear regression (Benestad et al., 2015)

FIC01P Tmax, precip Two step analog method (Ribalaygua et al., 2013)

FIC03P precip Two step analog method (Ribalaygua et al., 2013)

GLM precip Generalised linear Model with log-canonical link function (San-Martín et al., 2017). Bernoulli error

distribution for occurrence and gamma error distribution for accumulation. Predictions sampled from

output distribution.

GLM-det precip As for GLM, predictions given as mean of output distribution (San-Martín et al., 2017).

GLM-WT precip As for GLM, conditioned on 12 weather types identified by k-means clustering (San-Martín et al.,

2017).

MLR Tmax Multiple linear regression using PCA for predictors (Gutiérrez et al., 2013).

MLR-AAI Tmax, precip Multiple linear regression, annual training, anomaly data, inflation variance correction (Huth et al.,

2015).

MLR-AAN Tmax, precip Multiple linear regression, annual training, anomaly data, white-noise variance correction (Huth et al.,

2015).

MLR-AAW Tmax, precip Multiple linear regression, annual training, anomaly data, white-noise variance correction (Huth et al.,

2015).

MLR-ASI Tmax, precip Multiple linear regression, seasonal training, anomaly data, inflation variance correction (Huth et al.,

2015).

MLR-ASW Tmax, precip Multiple linear regression, seasonal training, anomaly data, white-noise variance correction (Huth et al.,

2015).

MLR-PCA-

ZTR

Tmax Multiple linear regression with s-mode principal component predictors (Jacobeit et al., 2014).

MLR-RAN Tmax, precip Multiple linear regression, seasonal training, raw data, no variance correction (Huth et al., 2015).

MLR-RSN Tmax, precip Multiple linear regression, seasonal training, raw data, no variance correction (Huth et al., 2015).

MLR-SDSM Tmax, precip Single-site multiple linear regression using the statistical downscaling method (Wilby et al., 2002).

MLR-WT Tmax As for MLR, but conditioned on weather types defined using k-means clustering (Gutiérrez et al., 2013).

MO-GP Tmax, precip Multi-objective genetic programming (Zerenner et al., 2016).

SWG Tmax, precip Two-step vectorised generalised linear models (Ayar et al., 2016).

WT-WG Tmax, precip Distributional fitting based on weather types selected using k-means clustering (Gutiérrez et al., 2013).
Table A1. Summary of models included in the VALUE ensemble.
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